Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli.

نویسندگان

  • Daniel J Cavanaugh
  • Hyosang Lee
  • Liching Lo
  • Shannon D Shields
  • Mark J Zylka
  • Allan I Basbaum
  • David J Anderson
چکیده

Behavioral responses to painful stimuli require peripheral sensory neurons called nociceptors. Electrophysiological studies show that most C-fiber nociceptors are polymodal (i.e., respond to multiple noxious stimulus modalities, such as mechanical and thermal); nevertheless, these stimuli are perceived as distinct. Therefore, it is believed that discrimination among these modalities only occurs at spinal or supraspinal levels of processing. Here, we provide evidence to the contrary. Genetic ablation in adulthood of unmyelinated sensory neurons expressing the G protein-coupled receptor Mrgprd reduces behavioral sensitivity to noxious mechanical stimuli but not to heat or cold stimuli. Conversely, pharmacological ablation of the central branches of TRPV1(+) nociceptors, which constitute a nonoverlapping population, selectively abolishes noxious heat pain sensitivity. Combined elimination of both populations yielded an additive phenotype with no additional behavioral deficits, ruling out a redundant contribution of these populations to heat and mechanical pain sensitivity. This double-dissociation suggests that the brain can distinguish different noxious stimulus modalities from the earliest stages of sensory processing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct behavioral responses evoked by selective optogenetic stimulation of the major TRPV1+ and MrgD+ subsets of C-fibers.

Primary C-fiber nociceptors are broadly divided into peptidergic and nonpeptidergic afferents. TRPV1 is a thermosensitive cation channel mainly localized in peptidergic nociceptors, whereas MrgD is a sensory G protein-coupled receptor expressed in most nonpeptidergic nociceptive afferents. TRPV1 and MrgD fibers have been reported to be primarily involved in thermal and mechanical nociception, r...

متن کامل

Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli.

the concept that sense organs of the skin with unmyelinated (C) fibers have widely varying functional characteristics. In the mammal, a large proportion of such sensory units are excited by gentle mechanical stimuli (8, 16, 34) and by transient cooling (9). Others are described as responding best to small temperature changes (13, 18) and some are reported to have elevated thresholds for various...

متن کامل

In vivo characterization of distinct modality-specific subsets of somatosensory neurons using GCaMP

Mechanistic insights into pain pathways are essential for a rational approach to treating this vast and increasing clinical problem. Sensory neurons that respond to tissue damage (nociceptors) may evoke pain sensations and are typically classified on the basis of action potential velocity. Electrophysiological studies have suggested that most of the C-fiber nociceptors are polymodal, responding...

متن کامل

TRPC1 contributes to light-touch sensation and mechanical responses in low-threshold cutaneous sensory neurons.

The cellular proteins that underlie mechanosensation remain largely enigmatic in mammalian systems. Mechanically sensitive ion channels are thought to distinguish pressure, stretch, and other types of tactile signals in skin. Transient receptor potential canonical 1 (TRPC1) is a candidate mechanically sensitive channel that is expressed in primary afferent sensory neurons. However, its role in ...

متن کامل

Receptive properties of mouse sensory neurons innervating hairy skin.

Using an in vitro nerve skin preparation and controlled mechanical or thermal stimuli, we analyzed the receptive properties of 277 mechanosensitive single primary afferents with myelinated (n = 251) or unmyelinated (n = 26) axons innervating the hairy skin in adult or 2-wk-old mice. Afferents were recorded from small filaments of either sural or saphenous nerves in an outbred mice strain or in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 22  شماره 

صفحات  -

تاریخ انتشار 2009